본서에서 주요내용 중 관심있는 부분을 요약해보고자 한다.
ㅇ과학에서 데이터의 위상
과학의 근본적인 과정은 관측된 데이터로 이론을 검증하여, 이론과 데이터가 불일치하면 해당 이론을 버리거나 수정하는 일이다. 하지만 우리는 불일치가 새로운 통찰을 줄 수도 있다는 것을 깨달아야 한다.
이론과 데이터가 일치하지 않으면, 데이터에 오류가 있기 때문일 수 있다.
데이터는 언제나 오류, 측정의 불확실성, 표본 왜곡, 그리고 다른 여러 문제점을 안고 있으며,
데이터 오류는 실존하는 가능성이라는 것이다.
그래서 과학자들은 정확한 측정 도구를 제작하고 정밀하게 통제된 조건하에서 측정하려고 온갖 노력을 다 기울인다. 측정 대상이 질량, 길이, 시간, 은하 사이의 거리, 지능, 의견, 복지, GDP, 실업, 인플레이션이든 다른 어떤 것이든 간에 말이다. 정확하고 신뢰할 만한 데이터는 제대로 된 과학에 필수적이다.
ㅇ데이터 결과값에 대한 파라메터에 관하여
예를 들어 다우존스산업평균지수는 미국의 30개 민간 대기업들의 개별 주가의 합을 다우 제수Dow divisor로 나눈 값이다.
하지만 기업은 생겼다 사라진다. 그리고 다우존스를 구성하는 기업들은 이 지수가 처음 시작된 1896년 이래로 50번 넘게 바뀌었다. 특히 재정적 어려움에 처하거나 경제 상황이 바뀔 때 기업들이 지수에서 빠질지 모른다. 다시 말해 다우지수는 전체 기업 실적을 대표하지 않고 꽤 잘나가는 기업들만 대표한다.
마찬가지로 시가총액이 큰 500개 기업의 가중치 적용 주가 평균인 S&P500에 속한 기업들도 다른 기업과 비교하여 실적이 악화될 때 지수에서 빠진다. 어느 기업을 빼는 결정은 반드시 사전에 입수한 데이터를 기반으로 내려져야 한다(데이터를 소급 적용해서는 안 된다!).
ㅇ데이터 수집원에서 일어나는 왜곡에 대하여
예를 들어 구글의 검색 알고리즘은 더 효율적으로 작동하기 위해 끊임없이 업데이트된다.
하지만 이 변경의 세부사항은 그런 과정에 깊이 관여하는 사람들을 제외하고는 대체로 모든 사람에게 알려지지 않는다. 최근의 변경 내용으로는 등급을 매길 때 웹페이지 품질 평가 점수의 도입, 조작으로 보이는 웹사이트의 강등, 검색어의 의도에 더 잘 맞추기 위한 자연어 처리, 모바일 친화적인 페이지의 등급 격상, 그리고 구글의 지침을 위반하는 웹사이트 식별 등이 있다. 이 모든 변경 사항은 타당하고 유익해 보이지만, 요점은 구글이 데이터 수집의 속성을 바꾼다는 사실 자체다. 다시 말해 이전에 수집된 데이터와 변경 후에 수집된 데이터를 비교하기가 어렵다(DD 유형 7: 시간에 따라 변하는 데이터). 특히 경제 및 사회복지 지표들의 값이 달라질 수 있는데, 기본적인 현실이 바뀌어서가 아니라 현실을 다루기 위해 수집되는 데이터가 바뀌었기 때문이다. 이른바 지표 표류indicator drift가 생기는 것이다. 이런 변화의 밑바탕에 다크 데이터가 도사리고 있다.